

BAAQMD Methane Measuring Initiatives

Idania Zamora
Technology Panel at CPUC Workshop
R.15-01-008 – Best Practices for Natural Gas Leak Abatement
April 6th, 2015

Contact: izamora@baaqmd.gov

Current LDAR Programs

- Air District oversees several LDAR programs for fugitive organic gases
 - for each refinery, bulk terminals and chem. plants
- Concentration-based leak thresholds enforced
 - Equipment: Toxic Vapor Analyzer (FID system)
 - Methodology: EPA Method 21
- Leaks > 10,000 ppm
 - 45 days to either measure mass emissions rate or to decrease leak under threshold
 - Obtaining mass leak rate is time- and effort-intensive
 - Procedure: "bag" the leaking component, measure the flowrate and take samples to be processed in the lab
- EPA-estimated emissions reduction w/ LDAR: 70-80%

CH₄ Measuring Initiatives

Goals

- 1) To improve the Air District's GHG emissions inventory and track long term pattern of CH₄ emissions
- 2) To trace, identify and quantify methane emissions from individual sources within the Air District

Measurements

- ~4 Fixed Monitoring Sites (Goal 1)
 - At exit flow points from Bay Area (well-mixed plumes, downwind of multiple CH₄ sources)
 - Co-located with existing BAAQMD monitoring sites to benefit from existing data collection (e.g., met, organic gases, NO_x and CO)
- Mobile Lab (Goal 2)
 - To identify and quantify individual sources, and to perform source attribution
 - To be equipped with high-precision CH₄ concentration measuring equipment

Measuring CH₄ with Mobile Lab

- Main technologies under consideration
 - Picarro/LGR Tracq Gas Analyzers
 - Pros: Lower cost; service/repair in Bay Area; can measure CH₄ isotopes
 - Cons: CH₄ isotopes not easily interpretable
 - Portable LGR
 - Pros: Can take measurements on-site; get closer to source
 - Cons: Similar cost to trace analyzers w/ lower precision
 - Aerodyne Dual QC Laser Trace Gas Monitor
 - Pros: Highest precision; can measure ethane, an indicator of non-biogenic CH₄
 - Cons: Highest cost; bulk of equipment may be drawback for mobile application

Other Initiatives

- EDF/Google Outreach Partnership
 - Google Street View cars measure CH₄ concentration
 (Picarro), wind speed/direction, and location
 - Methane leak maps of various cities in NY, IN,
 MA, VT and soon CA (Los Angeles)
 - More info: http://www.edf.org/climate/methanemaps

- Lamb et al., 2015: High flow sampler + Tent over "sniffed leaks"
- Top-down measurements
 - Satellites: Kort et al., 2014; Miller et al., 2013 (US)
 - Airplane: CALGEM project led by Dr. Fischer
 - Fixed monitoring sites:
 - Fairley and Fischer, 2015 (SF Bay Area)

Any questions?

Thank you for your attention!

Methane Detection Technology

Parameter	Open-path	Closed-path
Instrument examples	LI-COR 7700 CH ₄ analyzer	Picarro, LGR
Principle	air moves freely though measuring path of gas analyzer	air is forced into measuring path by pump
Energy consumption	Lower (~10 W), can be operated with solar panels	Higher, due to pump (~40 W)
Data loss due to precipitation	Minor	Minimal
Data speed	Up to 40 Hz	<5-10 Hz (slow); >5-10 Hz (fast)
Precision	High, but require frequent calibration	Instrument dependent; can be High
Advantages	Excellent stability; suitable for harsh environments; portability	Can employ various sensing technologies (e.g., NDIR, laser absorption, GCs)
Disadvantages	Density correction (i.e., WPL) due to changes in T, moisture	Tube attenuation (minimal for CO ₂ , CH ₄ ; affects H ₂ O)